DA-IICT Logo

Resource Centre

Image from Google Jackets

Polynomial approach to linear algebra

By: Publication details: Springer 2012 New YorkDescription: xvi, 411 p. ill. 24 cmISBN:
  • 9781461403371
Subject(s): DDC classification:
  • 512​.5 FUH
Summary: A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Cover image Item type Current library Home library Collection Shelving location Call number Materials specified Vol info URL Copy number Status Notes Date due Barcode Item holds Item hold queue priority Course reserves
Books DAU 512​.5 FUH Available 032127

Includes bibliographical references and index.

A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.

There are no comments on this title.

to post a comment.
Share