DA-IICT Logo

Resource Centre

Image from Google Jackets

Combinatorial convexity

By: Series: University lecture series ; v.77Publication details: American Mathematical Society, 2021 Providence :Description: viii, 148 p. ; ill., (some col.), 26 cmISBN:
  • 9781470467098
Subject(s): DDC classification:
  • 516.08 BAR
Summary: This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Carathéodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Carathéodory, and the (p, q) theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Cover image Item type Current library Home library Collection Shelving location Call number Materials specified Vol info URL Copy number Status Notes Date due Barcode Item holds Item hold queue priority Course reserves
Books DAU 516.08 BAR Available 034354

Includes bibliographical references and index.

This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Carathéodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Carathéodory, and the (p, q) theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory.

There are no comments on this title.

to post a comment.
Share