Normal view MARC view ISBD view

Qualitative theory of ODEs : an introduction to dynamical systems theory

By: Zoladek, Henryk.
Contributor(s): Murillo, Raul.
Material type: materialTypeLabelBookPublisher: New Jersey : World Scientific, 2023Description: xiii, 268 p. ; ill., 24 cm.ISBN: 9781800612686.Subject(s): Differential equations | Qualitative theory | Phase Portraits | Bifurcation Theory | Andronov -Hopf bifurcation | Bogdanov-Takens bifurcation | KAM theory | Duck solutions | Smale horseshoe | Dynamics Mathematical modelsDDC classification: 515.352 Summary: The Qualitative Theory of Ordinary Differential Equations (ODEs) occupies a rather special position both in Applied and Theoretical Mathematics. On the one hand, it is a continuation of the standard course on ODEs. On the other hand, it is an introduction to Dynamical Systems, one of the main mathematical disciplines in recent decades. Moreover, it turns out to be very useful for graduates when they encounter differential equations in their work; usually those equations are very complicated and cannot be solved by standard methods. The main idea of the qualitative analysis of differential equations is to be able to say something about the behavior of solutions of the equations, without solving them explicitly. Therefore, in the first place such properties like the stability of solutions stand out. It is the stability with respect to changes in the initial conditions of the problem. Note that, even with the numerical approach to differential equations, all calculations are subject to a certain inevitable error. Therefore, it is desirable that the asymptotic behavior of the solutions is insensitive to perturbations of the initial state. Each chapter contains a series of problems (with varying degrees of difficulty) and a self-respecting student should solve them. This book is based on the first author's translation of lecture notes in Polish by the second author, edited in the portal Matematyka Stosowana (Applied Mathematics) at the University of Warsaw.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and index.

The Qualitative Theory of Ordinary Differential Equations (ODEs) occupies a rather special position both in Applied and Theoretical Mathematics. On the one hand, it is a continuation of the standard course on ODEs. On the other hand, it is an introduction to Dynamical Systems, one of the main mathematical disciplines in recent decades. Moreover, it turns out to be very useful for graduates when they encounter differential equations in their work; usually those equations are very complicated and cannot be solved by standard methods. The main idea of the qualitative analysis of differential equations is to be able to say something about the behavior of solutions of the equations, without solving them explicitly. Therefore, in the first place such properties like the stability of solutions stand out. It is the stability with respect to changes in the initial conditions of the problem. Note that, even with the numerical approach to differential equations, all calculations are subject to a certain inevitable error. Therefore, it is desirable that the asymptotic behavior of the solutions is insensitive to perturbations of the initial state. Each chapter contains a series of problems (with varying degrees of difficulty) and a self-respecting student should solve them. This book is based on the first author's translation of lecture notes in Polish by the second author, edited in the portal Matematyka Stosowana (Applied Mathematics) at the University of Warsaw.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha