DA-IICT Logo

Resource Centre

Image from Google Jackets

Geometry VI : Riemannian geometry

By: Material type: TextSeries: Encyclopaedia of mathematical sciences ; 91Publication details: Berlin: Springer, 2001Description: xviii, 503p. ; 24 cmISBN:
  • 9783540411086
Subject(s): DDC classification:
  • 516.373 POS
Summary: This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. Before going to Riemannian geometry, the author presents a more general theory of manifolds with a linear connection. Having in mind different generalizations of Riemannian manifolds, it is clearly stressed which notions and theorems belong to Riemannian geometry and which of them are of a more general nature. Much attention is paid to trans formation groups of smooth manifolds. Throughout the book, different aspects of symmetric spaces are treated. The author successfully combines the co-ordinate and invariant approaches to differential geometry, which give the reader tools for practical calculations as well as a theoretical understanding of the subject.The book contains a very useful large Appendix on foundations of differentiable manifolds and basic structures on them which makes it self-contained and practically independent from other sources. The results are well presented and useful for students in mathematics and theoretical physics, and for experts in these fields. The book can serve as a textbook for students doing geometry, as well as a reference book for professional mathematicians and physicists.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Cover image Item type Current library Home library Collection Shelving location Call number Materials specified Vol info URL Copy number Status Notes Date due Barcode Item holds Item hold queue priority Course reserves
Books DAU 516.373 POS Available 031680

This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. Before going to Riemannian geometry, the author presents a more general theory of manifolds with a linear connection. Having in mind different generalizations of Riemannian manifolds, it is clearly stressed which notions and theorems belong to Riemannian geometry and which of them are of a more general nature. Much attention is paid to trans formation groups of smooth manifolds. Throughout the book, different aspects of symmetric spaces are treated. The author successfully combines the co-ordinate and invariant approaches to differential geometry, which give the reader tools for practical calculations as well as a theoretical understanding of the subject.The book contains a very useful large Appendix on foundations of differentiable manifolds and basic structures on them which makes it self-contained and practically independent from other sources. The results are well presented and useful for students in mathematics and theoretical physics, and for experts in these fields. The book can serve as a textbook for students doing geometry, as well as a reference book for professional mathematicians and physicists.

There are no comments on this title.

to post a comment.
Share