000 nam a22 7a 4500
999 _c29558
_d29558
008 190528b xxu||||| |||| 00| 0 eng d
020 _a9781138634091
_c(pbk)
082 _a511.5
_bKLI
100 _aKlivans, Caroline J.
245 _aMathematics of chip-firing
260 _aBoca Raton :
_bCRC press,
_c2019
300 _axii, 295 p. :
_bill. ;
_c23 cm.
365 _aGBP
_b88.99
_d00
490 _aDiscrete mathematics and its applications
504 _aIncludes bibliographical references and index.
520 _aThe Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system -- a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatoric
650 _aGraph theory
650 _aCombinatorial analysis
650 _aAbelian groups
650 _aSequences
942 _2ddc
_cBK