000 a
999 _c30095
_d30095
008 200530b xxu||||| |||| 00| 0 eng d
020 _a9781138046375
082 _a006.31015195
_bARN
100 _aArnold, Taylor
245 _aComputational Approach to Statistical Learning.
260 _bCRC Press
_c2019
_aMilton
300 _axiii, 377 p.
_bill.
_c24 cm.
365 _b59.99
_cGBP
_d98.20
504 _aIncludes bibliographical references.
520 _aA Computational Approach to Statistical Learning gives a novel introduction to predictive modeling by focusing on the algorithmic and numeric motivations behind popular statistical methods. The text contains annotated code to over 80 original reference functions. These functions provide minimal working implementations of common statistical learning algorithms. Every chapter concludes with a fully worked out application that illustrates predictive modeling tasks using a real-world dataset. The text begins with a detailed analysis of linear models and ordinary least squares. Subsequent chapters explore extensions such as ridge regression, generalized linear models, and additive models. The second half focuses on the use of general-purpose algorithms for convex optimization and their application to tasks in statistical learning. Models covered include the elastic net, dense neural networks, convolutional neural networks (CNNs), and spectral clustering. A unifying theme throughout the text is the use of optimization theory in the description of predictive models, with a particular focus on the singular value decomposition (SVD). Through this theme, the computational approach motivates and clarifies the relationships between various predictive models. Taylor Arnold is an assistant professor of statistics at the University of Richmond. His work at the intersection of computer vision, natural language processing, and digital humanities has been supported by multiple grants from the National Endowment for the Humanities (NEH) and the American Council of Learned Societies (ACLS). His first book, Humanities Data in R, was published in 2015. Michael Kane is an assistant professor of biostatistics at Yale University. He is the recipient of grants from the National Institutes of Health (NIH), DARPA, and the Bill and Melinda Gates Foundation. His R package bigmemory won the Chamber's prize for statistical software in 2010. Bryan Lewis is an applied mathematician and author of many popular R packages, including irlba, doRedis, and threejs.
650 _aMachine learning - Mathematics
650 _aMathematical statistics
650 _aEstimation theory
700 _aKane, Michae
700 _aLewis, Bryan W.
942 _2ddc
_cBK