000 a
999 _c31005
_d31005
008 220607b xxu||||| |||| 00| 0 eng d
020 _a9781484279175
082 _a005.136
_bKUS
100 _aKusswurm, Daniel
245 _aModern parallel programming with C++ and Assembly language : X86 SIMD development using AVX, AVX2, and AVX-512
260 _bApress,
_c2022
_aNew York :
300 _axx, 633 p. ;
_bill.,
_c26 cm
365 _b49.99
_cEUR
_d86.00
504 _aIncludes bibliographical references and index.
520 _aLearn the fundamentals of x86 Single instruction multiple data (SIMD) programming using C++ intrinsic functions and x86-64 assembly language. This book emphasizes x86 SIMD programming topics and technologies that are relevant to modern software development in applications which can exploit data level parallelism, important for the processing of big data, large batches of data and related important in data science and much more. Modern Parallel Programming with C++ and Assembly Language is an instructional text that explains x86 SIMD programming using both C++ and assembly language. The books content and organization are designed to help you quickly understand and exploit the SIMD capabilities of x86 processors. It also contains an abundance of source code that is structured to accelerate learning and comprehension of essential SIMD programming concepts and algorithms. After reading this book, you will be able to code performance-optimized AVX, AVX2, and AVX-512 algorithms using either C++ intrinsic functions or x86-64 assembly language. You will: Understand the essential details about x86 SIMD architectures and instruction sets including AVX, AVX2, and AVX-512. Master x86 SIMD data types, arithmetic instructions, and data management operations using both integer and floating-point operands. Code performance-enhancing functions and algorithms that fully exploit the SIMD capabilities of a modern x86 processor. Employ C++ intrinsic functions and x86-64 assembly language code to carry out arithmetic calculations using common programming constructs including arrays, matrices, and user-defined data structures. Harness the x86 SIMD instruction sets to significantly accelerate the performance of computationally intense algorithms in applications such as machine learning, image processing, computer graphics, statistics, and matrix arithmetic. Apply leading-edge coding strategies and techniques to optimally exploit the x86 SIMD instruction sets for maximum possible performance.
650 _aAssembly languages
650 _aComputer program language
650 _aComputer architecture
650 _aID discrete
650 _a2D discrete
650 _aMatrix multiplication
650 _aBenchmarking timing measurements
650 _aSIMD intrinsic data types
650 _aVisual studio
650 _aLow-pass filter
650 _aBig data
650 _aCS
942 _2ddc
_cBK