000 | a | ||
---|---|---|---|
999 |
_c31912 _d31912 |
||
008 | 230419b xxu||||| |||| 00| 0 eng d | ||
020 | _a9780367241889 | ||
082 |
_a519.5 _bMON |
||
100 | _aMonahan, John F | ||
245 | _aPrimer on linear models | ||
260 |
_bChapman & Hall _c2008 _aBoca Raton : |
||
300 |
_axiv, 287 p. ; _bill., _c23 cm |
||
365 |
_b1995.00 _cINR _d01 |
||
490 | _aTexts in statistical science | ||
504 | _aIncludes bibliographical references and index. | ||
520 | _aA Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It seamlessly incorporates these concepts using non-full-rank design matrices and emphasizes the exact, finite sample theory supporting common statistical methods. This text enables complete comprehension of the material by taking a general, unifying approach to the theory, fundamentals, and exact results of linear models. | ||
650 | _aLinear models | ||
650 | _aAggregation, Gauss-Markov model | ||
650 | _aANOVA | ||
650 | _aBest linear unbiased estimator | ||
650 | _a Cell means model | ||
650 | _aCochran's theorem | ||
650 | _aDistributional theory | ||
650 | _aEigenvalues | ||
650 | _aEstimability | ||
650 | _aFirst-order autoregressive error models | ||
650 | _a Graam-Schmid orthonormalization | ||
650 | _aHypothesis testing | ||
650 | _a Pythagorean theorem | ||
650 | _a Multivariate linear model | ||
650 | _aNested model, two way | ||
650 | _aOrthogonal polynomials | ||
650 | _a Regression models | ||
650 | _aTwo-sample problem | ||
650 | _aUnbiased estimators | ||
650 | _a Zero estimator | ||
942 |
_2ddc _cBK |