| 000 | nam a22 4500 | ||
|---|---|---|---|
| 999 |
_c32781 _d32781 |
||
| 008 | 240218b xxu||||| |||| 00| 0 eng d | ||
| 020 | _a9783540939122 | ||
| 082 |
_a516.35 _bMOC |
||
| 100 | _aMochizuki, Takuro | ||
| 245 | _aDonaldson type invariants for algebraic surfaces : transition of moduli stacks | ||
| 260 |
_bSpringer, _aBerlin : _c2009 |
||
| 300 |
_axxiii, 383 p. ; _bill., _c24 cm. |
||
| 365 |
_b56.95 _c€ _d5398.86 |
||
| 490 |
_aLecture notes in mathematics _vv.1972 |
||
| 504 | _aIncludes bibliographical references and index. | ||
| 520 | _aWe are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface. We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case! | ||
| 650 | _aRank Two Case | ||
| 650 | _aObstruction theory | ||
| 650 | _aSemistable sheaves | ||
| 650 | _aSmooth function | ||
| 650 | _aTransition of moduli stacks | ||
| 650 | _aAlgebraic surface | ||
| 650 | _aInvariant theory | ||
| 650 | _aChern class | ||
| 650 | _aCoherent sheaf | ||
| 650 | _aDonaldson invariants | ||
| 650 | _aHilbert polynomial | ||
| 650 | _aModuli stack | ||
| 650 | _aObstruction theory | ||
| 650 | _aQuasi-isomorphism | ||
| 650 | _aSmooth morphism | ||
| 650 | _aTautological line bundle | ||
| 650 | _aVector bundle | ||
| 942 |
_2ddc _cBK |
||