000 | a | ||
---|---|---|---|
999 |
_c33976 _d33976 |
||
008 | 250530b xxu||||| |||| 00| 0 eng d | ||
020 | _a9780486322582 | ||
082 |
_a515.64 _bGEL |
||
100 | _aGelfand, I. M. | ||
245 | _aCalculus of variations | ||
260 |
_bDover Publications, _c2020 _aMineola : |
||
300 |
_avii, 232 p. ; _bill., _c22 cm |
||
365 |
_b450.00 _c₹ _d01 |
||
504 | _aIncludes bibliographical references and index. | ||
520 | _aFirst 6 chapters include theory of fields and sufficient conditions for weak and strong extrema. Chapter 7 considers application of variation methods to systems with infinite degrees of freedom, and Chapter 8 deals with direct methods in the calculus of variations. Problems follow each chapter and the 2 appendices. | ||
650 | _aBoundary conditions | ||
650 | _aDifferential equation | ||
650 | _aEuler equations | ||
650 | _aHamilton-Jacobi equation | ||
650 | _aQuadratic functional | ||
650 | _aTaylor's theorem | ||
650 | _aVariational problem | ||
700 | _aFomin, S. V. | ||
700 |
_aSilverman, Richard A. _etr. & ed. |
||
942 |
_2ddc _cBK |